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The interplanetary negatron and positron spectra 

from 12 t o  220 MeV have been determined with a balloon- 

borne magnetic spectrometer. The observed charge r a t i o  

e /(e 

consis ts  of a mixture of "primary" negatrons and in t e r -  

s t e l l a r  "secondary" negatrons and positrons. We deter- 

mine an absolute so la r  modulation of the i n t e r s t e l l a r  

positron f lux  which decreases with decreasing magnetic 

r i d i d i t y  below about 80 MV. 

+ - I -  + e-) 3 0.3 indicates t ha t  the f lux  most l i k e l y  

Measurements of the shape and the charge composition of the interplanetary 

electron' spectrum a r e  important t o  studies of physical phenomena i n  the in te r -  

s t e l l a r  and interplanetary media. 

sidered major po ten t ia l  contributors t o  the equilibrium cosmic-ray electron f lux  

i n  the galaxy. 

A t  present, two source mechanisms a r e  con- 

"Primary" electrons a r e  d i r ec t ly  accelerated i n  "hot" l o c i  i n  
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the  galaxy, e.g., supernovae, and "secondary" electrons a r e  produced i n  c o l l i -  

sions of high-energy cosmic-ray nuclei  with i n t e r s t e l l a r  matter. Positrons i n  

s ign i f icant  numbers a r e  expected only from the co l l i s ion  source, and the i r  spec- 

t rum can be calculated2y3. 

ured resu l t s ,  which include information on both the anergy spectrum and charge 

composition of the  electron f l u x  between 12 and 220 MeV, allows us t o  determine 

the r e l a t ive  proportions of i n t e r s t e l l a r  primary and secondary electrons,  and 

t o  impose r e s t r i c t ions  on the  propagation and so lar  modulation of the observed 

cosmic-ray electron fluxes. 

Comparison of the calculated spectra with our meas- 

Our measurements were performed near the  top of the atmosphere with a bal-  

loon-borne magnetic spectrometer. The detector system4 consis ts  of an a r ray  

of s c i n t i l l a t i o n  counters, a 1 kG permanent magnet, w i r e  spark chambers with 

magnetostrictive readout, and a Eerenkov counter. 

t r y  factor  equal t o  3.7 cm2 sr between 25 and 200 MeV/c, decreasing a t  lower 

momenta t o  1.5 c m  sr a t  6 MeV/c. The momentum resolution for  e lectrons be- 

low 100 MeV/c  i s  l imited primarily by sca t te r ing  and equals about 25 percent 

FWNM, independent of momentum. Above 100 MeV/c, the  momentum resolution is  

a function of the i n t r i n s i c  angular resolut ion and i s  l inear  with momentum, 

r i s i n g  t o  50 percent FWHM a t  200 MeV/c. 

The instrument has a geome- 

2 

The data presented i n  t h i s  paper a r e  derived from three high-alt i tude bal-  

loon f l i g h t s  launched from Fort  Churchill, Canada, on July 15, July 20, and 

July 28, 1968, 

s idual  atmosphere respectively, with var ia t ions of k0.15 g/cm . 
cussed below were measured during the nighttime period when the loca l  geomag- 

n e t i c  cutoff was below our analysis  threshold. Since no s t a t i s t i c a l l y  s igni-  

f i can t  temporal var ia t ions i n  the measured electron f lux  were observed among 

the  three f l i gh t s ,  the data have been combined for  increased s t a t i s t i c a l  accuracy. 

A large f rac t ion  of the low energy electrons observed a t  an atmospheric depth 

2 Average f l o a t  a l t i t udes  were 2.45, 2.40, and 2.35 g/cm of re- 

The data d i s -  2 
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2 of 2.4 g/cm 

l e i  above. The separation of cosmic ray electrons from atmospheric secondar- 

i e s  is non-tr ivial .  Our technique is to express the atmospheric depth depend- 

ence of the measured positron or  negatron f lux  J?(d), for an energy interval  i, 

as  

or iginate  i n  co l l i s ions  of cosmic ray nuclei  with atmospheric nuc- 

1 

+ +  + +  
J:(d) = ai sf(d)  + bT pi(d) 

+ 
where d i s  atmospheric depth, s-(d) i s  the depth dependence of the f lux of (a t -  

mospheric) secondary positrons or negatrons, p'(d) i s  the depth dependence of 

the f lux  of primary positrons or  negatrons, and a- and b- a r e  parameters which 

represent the r e l a t ive  contribution of the secondary and primary components. 

The parameters a- and b- were determined by a l e a s t  squares f i t  to  seven data 

points from 2.4 g/cm2 to  42 g/cm atmospheric depth. 

s-(d) of atmospheric secondary electrons used i n  our analysis i s  based upon ca l -  

eulations by one of us . Since p-(d) depends upon the unknown primary electron 

spectrum a t  the top of the atmosphere, an i t e r a t i v e  process was used. However, 

the derived spectrum, b- p- (0), i s  not strongly dependent on the choice of any 

reasonable form of p-(0) ,  and the process converges quickly. The derived local  

energy fluxes have been corrected for  energy loss i n  the residual atmosphere 

above the detector and a r e  given with s t a t i s t i c a l  and estimated systematic er- 

rors .  

+ + 

+ + 

2 The depth dependence 
+ 

5 + 

+ +  

+ 

In Fig. 1 our measured d i f f e r e n t i a l  cosmic-ray electron f luxes  (positrons 

p lus  negatrons) i n  1968 a r e  shown together with recent results 6-10 of other 

investigators.  A s t r i k ing  feature of our 1968 electron spectrum i s  the low 

f lux  of electrons observed i n  the 60-110 MeV region. We believe tha t  t h i s  par- 

t i cu l a r  feature  i s  genuine, since our analysis c lear ly  excludes any f i t t i n g  a t -  

tempts without t h i s  minimum i n  both the positron and negatron spectra. An upper 
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l i m i t  only can be given fo r  the f lux  i n  t h i s  energy interval .  

In  Fig. 2 we show our measured d i f f e ren t i a l  r i g i d i t y  spectra of positrons 

and negatrons separately. 

e /(e 

latedaY3 for  a spectrum of pure collision-produced interstellar secondary elec- 

trons,  e+/(e 

The prevail ing charge r a t i o  between 12 and 220 M V ,  

I - +  + e-) x?r 0.3, i s  inconsistent with the corresponding charge r a t i o  calcu- 

I- + e-) s 0.75-0.90. The observed f lux  therefore most l i ke ly  r e p -  

resents  a mixture of primary negatrons and i n t e r s t e l l a r  secondary negatrons and 

positrons. 

The absolute so la r  modulation of positrons i n  1968 can be determined for  

our energy in te rva l  by comparing the positron spectrum measured a t  the Earth 

with the calculated i n t e r s t e l l a r  positron spectrum of pure co l l i s ion  or ig in  un- 

der the assumptions tha t  1) no other s ign i f icant  sources of positrons a t  these 

energies exist, and 2)  the  calculated positron equilibrium spectrum is su f f i -  

c ien t ly  accurate. 

culated by Ramaty and Lingenfelter (R + L) (shown i n  Fig. 2) indicates t ha t  

the positron f lux  between 60-110 MeV is  modulated most strongly, and tha t  the 

Such a comparison with the i n t e r s t e l l a r  positron f lux  ca l -  

2 

modulation then decreases rapidly with decreasing energy. 

t i on  F(R), which is  the r a t i o  of the observed f lux  and the calculated in t e r -  

s t e l l a r  flux, i s  shown i n  Fig. 2. 

The modulation func- 

This empirically determined modulation function can be compared with theoret i -  

l l ,U cal  considerations which a r e  based on Parker's diffusion-convection model 

The predicted modulation function has the form F(R) = exp (-p/f3 f (R)), where 

pc i s  the p a r t i c l e  velocity,  R the magnetic r ig id i ty ,  and? i s  a t i m e  dependent 

parameter that i s  independent of and 

evidence tha t  i f  the power spectrum of 

has a dependence on frequencyJof the 

ray nuclei  i t  i s  found l2 , l3 tha t  

R. There is  theoret ical  and experimental 

magnetic i r r egu la r i t i e s  i n  the solar  wind 

2 -a formJ-a, then f(R) i s  R . For cosmic 
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f(R) = R6for R 7 Ro 

f(R) = Ro for  R L Ro 

where 4% 0.5 to  1, and Ro SVN 0.5 t o  1 GV. 

In  Fig. 2, the curve NMOD was derived by the application of the 

modulation function F(R), with cf= 1, Ro = 0.5 BV, and Q = 0.5 BV, t o  the 

i n t e r s t e l l a r  positron spectrum of R + L. 

of parameters nor any other within the range given by nuclei  data gives a s a t i s -  

factory f i t  t o  our data. 

It is clear  tha t  nei ther  t h i s  choice 

A much be t t e r  f i t  t o  the data is given by the curve 

H O D ,  for  which Q = 0.5 BV and 

f(R) = R for  R 7 Ro = 70 Mv 

f(R) = - RO for R L .  Ro = 70 Mv 

2 

R 

This modulation form, i f  re la ted to  the magnetic power spectrum in the solar  
-3 -3 wind, would require a 7/ dependence a t  the relevant frequencies above 10 

Hz. No interplanetary magnetometer data for  the time period of our measure- 

ments a re  presently avai lable  t o  check t h i s  poss ib i l i ty .  

It is  possible tha t  other features of the interplanetary magnetic f i e l d  

could cause the observed modulation e f fec ts .  The propagation of low-rigidity 

galact ic  par t ic les  i n  the solar  wind may be related to  the "we t  spaghetti" 

model of intertwinedflux tubes l4 ' I5  and recent observations of the filamentary 

s t ruc ture  of the f i e l d  . I f  f lux tubes containing a re la t ive ly  ordered f i e l d  

a re  indeed a common feature  of the interplanetary f i e l d  and connect to  the in te r -  

s t e l l a r  f ie lds ,  par t ic les  of low r i g i d i t y  may penetrate r e l a t ive ly  unobstructed 

in to  the interplanetary medium. 

plasma i n s t a b i l i t i e s  or  i r r egu la r i t i e s  beyond several AU which in te rac t  strongly 

with * l o 0  MeV positrons. 

16 

An a l t e rna te  poss ib i l i ty  i s  the presence of 
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Additional information can be gained from our data without specifying the 

nature of the solar  modulation process beyond assuming equal modulation for both 

1 7  negatrons and positrons of equal energy . Fig. 3 shows the r e su l t  of using our 

empirically derived positron modulation function to  demodulate the electron spec- 

trum observed a t  the Earth. The decreasing amount of modulation below about 

80 MeV i s  consistent with the absence of s ignif icant  long t e r m  var ia t ions i n  

18 the interplanetary electron spectrum below 12 MeV, which has been observed 

over several years. Similarly, the small modulation makes these electron fluxes 

consistent with an i n t e r s t e l l a r  knock-on or ig in  19,20 

The spectrum of electrons from primary sources i n  the galaxy can be obtained 

by subtracting the calculated i n t e r s t e l l a r  electron spectrum from the demodulated 

t o t a l  electron spectrum (see Fig. 3 ) .  A comparison of the primary electron spec- 

trum with an E -2*5 power law extrapolation from higher energies shows tha t  a t  

50 MeV the i n t e r s t e l l a r  primary f lux  i s  a factor  of ~ 1 0 0  smaller. I f  the deduced 

primary spectrum i s  i n  

for  these par t ic les  is 

f ac t  the source spectrum, then the acceleration mechanism 

di f fe ren t  from the solar  acclerat ion process, which pro- 
0 3  L L  duces steep power-law spectra a t  these energies . 

W e  are grateful  t o  Messrs. W. Blodgett, M. Radomski, and H. E. Smith for the i r  

contribution t o  the success of the experiment. 
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Figure Captions 

Figure 1 Differential kinetic-energy spectra of interplanetary cosmic-ray 

electrons. 

of the observers. 

The year of the measurement is given with the names 

Figure 2 Differential rigidity spectra of cosmic-ray positrons (closed squares) 
+ and negatrons (open squares). Dashed curve (es): interstellar 

positron spectrum from collision source (Ref. . Solid curves, 

NMOD and EMOD: 

F(R), given by Eq. 1 and Eq. 2 respectively, with parameters as 

given in text. 

result of multiplying e+ with modulation function 
S 

Figure 3 Differential kinetic-energy spectra of interplanetary and inter- 

stellar electrons. Curve 1: composite interplanetary electron 

spectrum observed near Earth. Closed squares: our measurement. 

Curve 2: demodulated, galactic electron spectrum, extrapolated 

smoothly to higher energies, assuming no modulation above 5 GeV. 

Open squares: our demodulated data points. Curve 3: interstellar 

secondary electron spectrum for 4 g/cm 

contribution of knock-on electrons (Ref. 2 0 ) .  Curve 4 :  primary 

electrons, obtained by subtraction of curve 3 from curve 2. Curve 

5: 

2 matter (Ref. 

E -2*5  power law extrapolation from higher energies. 
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